Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
mSphere ; : e0010524, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712930

RESUMEN

Wastewater surveillance can reveal population-level infectious disease burden and emergent public health threats can be reliably assessed through wastewater surveillance. While molecular methods for wastewater monitoring of microorganisms have traditionally relied on PCR-based approaches, next-generation sequencing (NGS) can provide deeper insights via genomic analyses of multiple diverse pathogens. We conducted a year-long sequencing surveillance of 1,408 composite wastewater samples collected from 12 neighborhood-level access points in the greater Tempe area, Arizona, USA, and show that variation in wastewater viruses is driven by seasonal time and location. The temporal dynamics of viruses in wastewater were influenced cyclically, with the most dissimilarity between samples 23 weeks apart (i.e., winter vs summer, spring vs fall). We identified diverse urinary and enteric viruses including polyomaviruses, astroviruses, and noroviruses, and showed that their genotypes/subtypes shifted across seasons. We show that while wastewater data of certain respiratory viruses like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strongly correlate with clinical case rates, laboratory-reported case incidences were discordant with surges of high viral load in wastewater for other viruses like human coronavirus 229E. These results demonstrate the utility of wastewater sequencing for informing decision-making in public health.IMPORTANCEWastewater surveillance can provide insights into the spread of pathogens in communities. Advances in next-generation sequencing (NGS) methodologies allow for more precise detection of viruses in wastewater. Long-term wastewater surveillance of viruses is an important tool for public health preparedness. This system can act as a public health observatory that gives real-time early warning for infectious disease outbreaks and improved response times.

2.
Res Sq ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38699305

RESUMEN

Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that while the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). However, gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.

3.
Res Sq ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699319

RESUMEN

Despite successful suppression of plasma HIV replication by antiretroviral therapy (ART), some women living with HIV (WLHIV) can still experience genital HIV shedding (discordant shedding). Female genital tract (FGT) microbiome and virome dynamics during long-term ART in WLHIV are poorly understood but might contribute to discordant HIV shedding, as the microbiome and virome are known to influence FGT health. To understand FGT microbial communities over time during ART usage and discordant shedding, we characterized the microbiome and virome in 125 cervicovaginal specimens collected over two years in 31 WLHIV in Lima, Peru. Intrapersonal bacterial microbiome variation was higher in HIV shedders compared to non-shedders. Cervicovaginal virome composition changed over time, particularly in non-shedders. Specifically, anellovirus relative abundance was inversely associated with ART duration and CD4 counts. Our results suggest that discordant HIV shedding is associated with FGT microbiome instability, and immune recovery during ART influences FGT virome composition.

4.
Res Sq ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38699359

RESUMEN

The nasopharynx and its microbiota are implicated in respiratory health and disease. The interplay between viral infection and the nasopharyngeal microbiome is an area of increased interest and of clinical relevance. The impact of SARS-CoV-2, the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, on the nasopharyngeal microbiome, particularly among individuals living with HIV, is not fully characterized. Here we describe the nasopharyngeal microbiome before, during and after SARS-CoV-2 infection in a longitudinal cohort of Kenyan women (21 living with HIV and 14 HIV-uninfected) and their infants (18 HIV-exposed, uninfected and 18 HIV-unexposed, uninfected), followed between September 2021 through March 2022. We show using genomic epidemiology that mother and infant dyads were infected with the same strain of the SARS-CoV-2 Omicron variant that spread rapidly across Kenya. Additionally, we used metagenomic sequencing to characterize the nasopharyngeal microbiome of 20 women and infants infected with SARS-CoV-2, 6 infants negative for SARS-CoV-2 but experiencing respiratory symptoms, and 34 timepoint matched SARS-CoV-2 negative mothers and infants. Since individuals were sampled longitudinally before and after SARS-CoV-2 infection, we could characterize the short- and long-term impact of SARS-CoV-2 infection on the nasopharyngeal microbiome. We found that mothers and infants had significantly different microbiome composition and bacterial load (p-values <.0001). However, in both mothers and infants, the nasopharyngeal microbiome did not differ before and after SARS-CoV-2 infection, regardless of HIV-exposure status. Our results indicate that the nasopharyngeal microbiome is resilient to SARS-CoV-2 infection and was not significantly modified by HIV.

5.
medRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38586006

RESUMEN

Areas of dense population congregation are prone to experience respiratory virus outbreaks. We monitored wastewater and clinic patients for the presence of respiratory viruses on a large, public university campus. Campus sewer systems were monitored in 16 locations for the presence of viruses using next generation sequencing over 22 weeks in 2023. During this period, we detected a surge in human adenovirus (HAdV) levels in wastewater. Hence, we initiated clinical surveillance at an on-campus clinic from patients presenting with acute respiratory infection. From whole genome sequencing of 123 throat and/or nasal swabs collected, we identified an outbreak of HAdV, specifically of HAdV-E4 and HAdV-B7 genotypes overlapping in time. The temporal dynamics and proportions of HAdV genotypes found in wastewater were corroborated in clinical infections. We tracked specific single nucleotide polymorphisms (SNPs) found in clinical virus sequences and showed that they arose in wastewater signals concordant with the time of clinical presentation, linking community transmission of HAdV to the outbreak. This study demonstrates how wastewater-based epidemiology can be integrated with surveillance at ambulatory healthcare settings to monitor areas prone to respiratory virus outbreaks and provide public health guidance.

6.
Emerg Infect Dis ; 29(11): 2380-2382, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705075

RESUMEN

We conducted surveillance of respiratory syncytial virus (RSV) genomic sequences for 100 RSV-A and 27 RSV-B specimens collected during November 2022-April 2023 in Arizona, USA. We identified mutations within prefusion F-protein antigenic sites in both subtypes. Continued genomic surveillance will be critical to ensure RSV vaccine effectiveness.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Infecciones por Virus Sincitial Respiratorio/epidemiología , Arizona/epidemiología , Proteínas Virales de Fusión/genética , Virus Sincitial Respiratorio Humano/genética , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Mutación
7.
Microbiol Spectr ; 11(4): e0525822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37306573

RESUMEN

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, mutations arise that will allow the virus to evade immune defenses and therapeutics. Assays that can identify these mutations can be used to guide personalized patient treatment plans. Digital PCR (dPCR) is a fast and reliable complement to whole-genome sequencing that can be used to discriminate single nucleotide polymorphisms (SNPs) in template molecules. Here, we developed a panel of SARS-CoV-2 dPCR assays and demonstrate its applications for typing variant lineages and therapeutic monoclonal antibody resistance. We first designed multiplexed dPCR assays for SNPs located at residue 3395 in the orf1ab gene that differentiate the Delta, Omicron BA.1, and Omicron BA.2 lineages. We demonstrate their effectiveness on 596 clinical saliva specimens that were sequence verified using Illumina whole-genome sequencing. Next, we developed dPCR assays for spike mutations R346T, K444T, N460K, F486V, and F486S, which are associated with host immune evasion and reduced therapeutic monoclonal antibody efficacy. We demonstrate that these assays can be run individually or multiplexed to detect the presence of up to 4 SNPs in a single assay. We perform these dPCR assays on 81 clinical saliva SARS-CoV-2-positive specimens and properly identify mutations in Omicron subvariants BA.2.75.2, BM.1.1, BN.1, BF.7, BQ.1, BQ.1.1, and XBB. Thus, dPCR could serve as a useful tool to determine if clinical specimens contain therapeutically relevant mutations and inform patient treatment. IMPORTANCE Spike mutations in the SARS-CoV-2 genome confer resistance to therapeutic monoclonal antibodies. Authorization for treatment options is typically guided by general trends of variant prevalence. For example, bebtelovimab is no longer authorized for emergency use in the United States due to the increased prevalence of antibody-resistant BQ.1, BQ.1.1, and XBB Omicron subvariants. However, this blanket approach limits access to life-saving treatment options to patients who are otherwise infected with susceptible variants. Digital PCR assays targeting specific mutations can complement whole-genome sequencing approaches to genotype the virus. In this study, we demonstrate the proof of concept that dPCR can be used to type lineage defining and monoclonal antibody resistance-associated mutations in saliva specimens. These findings show that digital PCR could be used as a personalized diagnostic tool to guide individual patient treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Mutación , Reacción en Cadena de la Polimerasa Multiplex , Anticuerpos Monoclonales , Prueba de COVID-19
8.
PLoS One ; 18(1): e0278675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649247

RESUMEN

BACKGROUND: HIV may increase SARS-CoV-2 infection risk and COVID-19 severity generally, but data are limited about its impact on postpartum women and their infants. As such, we characterized SARS-CoV-2 infection among mother-infant pairs in Nairobi, Kenya. METHODS: We conducted a nested study of 62 HIV-uninfected and 64 healthy women living with HIV, as well as their HIV-exposed uninfected (N = 61) and HIV-unexposed (N = 64) infants, participating in a prospective cohort. SARS-CoV-2 serology was performed on plasma collected between May 1, 2020-February 1, 2022 to determine the incidence, risk factors, and symptoms of infection. SARS-CoV-2 RNA PCR and sequencing was also performed on available stool samples from seropositive participants. RESULTS: SARS-CoV-2 seropositivity was found in 66% of the 126 mothers and in 44% of the 125 infants. There was no significant association between SARS-CoV-2 infection and maternal HIV (Hazard Ratio [HR] = 0.810, 95% CI: 0.517-1.27) or infant HIV exposure (HR = 1.47, 95% CI: 0.859-2.53). Maternal SARS-CoV-2 was associated with a two-fold increased risk of infant infection (HR = 2.31, 95% CI: 1.08-4.94). Few participants (13% mothers, 33% infants) had symptoms; no participant experienced severe COVID-19 or death. Seroreversion occurred in about half of mothers and infants. SARS-CoV-2 sequences obtained from stool were related to contemporaneously circulating variants. CONCLUSIONS: These data indicate that postpartum Kenyan women and their infants were at high risk for SARS-CoV-2 infection and that antibody responses waned over an average of 8-10 months. However, most cases were asymptomatic and healthy women living with HIV did not have a substantially increased risk of infection or severe COVID-19.


Asunto(s)
COVID-19 , Infecciones por VIH , Femenino , Humanos , Lactante , COVID-19/epidemiología , COVID-19/complicaciones , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Kenia/epidemiología , Periodo Posparto , Estudios Prospectivos , ARN Viral/análisis , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estudios de Casos y Controles , Heces/virología , Reacción en Cadena de la Polimerasa
9.
mBio ; 14(1): e0310122, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36622143

RESUMEN

The adaptive evolution of SARS-CoV-2 variants is driven by selection for increased viral fitness in transmissibility and immune evasion. Understanding the dynamics of how an emergent variant sweeps across populations can better inform public health response preparedness for future variants. Here, we investigated the state-level genomic epidemiology of SARS-CoV-2 through baseline genomic sequencing surveillance of 27,071 public testing specimens and 1,125 hospital inpatient specimens diagnosed between November 1, 2021, and January 31, 2022, in Arizona. We found that the Omicron variant rapidly displaced Delta variant in December 2021, leading to an "Omicron surge" of COVID-19 cases in early 2022. Wastewater sequencing surveillance of 370 samples supported the synchronous sweep of Omicron in the community. Hospital inpatient COVID-19 cases of Omicron variant presented to three major hospitals 10.51 days after its detection from public clinical testing. Nonsynonymous mutations in nsp3, nsp12, and nsp13 genes were significantly associated with Omicron hospital cases compared to community cases. To model SARS-CoV-2 transmissions across the state population, we developed a scalable sequence network methodology and showed that the Omicron variant spread through intracounty and intercounty transmissions. Finally, we demonstrated that the temporal emergence of Omicron BA.1 to become the dominant variant (17.02 days) was 2.3 times faster than the prior Delta variant (40.70 days) or subsequent Omicron sublineages BA.2 (39.65 days) and BA.5 (35.38 days). Our results demonstrate the uniquely rapid sweep of Omicron BA.1. These findings highlight how integrated public health surveillance can be used to enhance preparedness and response to future variants. IMPORTANCE SARS-CoV-2 continues to evolve new variants throughout the pandemic. However, the temporal dynamics of how SARS-CoV-2 variants emerge to become the dominant circulating variant is not precisely known. Genomic sequencing surveillance offers unique insights into how SARS-CoV-2 spreads in communities and the lead-up to hospital cases during a surge. Specifically, baseline sequencing surveillance through random selection of positive diagnostic specimens provides a representative outlook of the virus lineages circulating in a geographic region. Here, we investigated the emergence of the Omicron variant of concern in Arizona by leveraging baseline genomic sequence surveillance of public clinical testing, hospitals, and community wastewater. We tracked the spread and evolution of the Omicron variant as it first emerged in the general public, and its rapid shift in hospital admissions in the state health system. This study demonstrates the timescale of public health preparedness needed to respond to an antigenic shift in SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Arizona/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , Aguas Residuales , Hospitales , Prueba de COVID-19
10.
J Med Virol ; 95(1): e28221, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251533

RESUMEN

A multitude of enzyme-linked immunosorbent assays (ELISAs) has been developed to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies since the coronavirus disease 2019 pandemic started in late 2019. Assessing the reliability of these assays in diverse global populations is critical. This study compares the use of the commercially available Platelia Total Ab Assay (Bio-Rad) nucleocapsid ELISA to the widely used Mount Sinai spike IgG ELISA in a Kenyan population seroprevalence study. Using longitudinal plasma specimens collected from a mother-infant cohort living in Nairobi, Kenya between May 2019 and December 2020, this study demonstrates that the two assays have a high qualitative agreement (92.7%) and strong correlation of antibody levels (R2 = 0.973) in repeated measures. Within this cohort, seroprevalence detected by either ELISA closely resembled previously published seroprevalence estimates for Kenya during the sampling period and no significant difference in the incidence of SARS-CoV-2 antibody detection by either assay was observed. Assay comparability was not affected by HIV exposure status. These data support the use of the Platelia SARS-CoV-2 Total Ab ELISA as a suitable high-throughput method for seroprevalence studies in Kenya.


Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Lactante , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Kenia/epidemiología , Estudios Seroepidemiológicos , Reproducibilidad de los Resultados , Ensayo de Inmunoadsorción Enzimática/métodos , Nucleocápside , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Sensibilidad y Especificidad
11.
Lancet Microbe ; 4(1): e29-e37, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493788

RESUMEN

BACKGROUND: Before the COVID-19 pandemic, the US opioid epidemic triggered a collaborative municipal and academic effort in Tempe, Arizona, which resulted in the world's first open access dashboard featuring neighbourhood-level trends informed by wastewater-based epidemiology (WBE). This study aimed to showcase how wastewater monitoring, once established and accepted by a community, could readily be adapted to respond to newly emerging public health priorities. METHODS: In this population-based study in Greater Tempe, Arizona, an existing opioid monitoring WBE network was modified to track SARS-CoV-2 transmission through the analysis of 11 contiguous wastewater catchments. Flow-weighted and time-weighted 24 h composite samples of untreated wastewater were collected at each sampling location within the wastewater collection system for 3 days each week (Tuesday, Thursday, and Saturday) from April 1, 2020, to March 31, 2021 (Area 7 and Tempe St Luke's Hospital were added in July, 2020). Reverse transcription quantitative PCR targeting the E gene of SARS-CoV-2 isolated from the wastewater samples was used to determine the number of genome copies in each catchment. Newly detected clinical cases of COVID-19 by zip code within the City of Tempe, Arizona were reported daily by the Arizona Department of Health Services from May 23, 2020. Maricopa County-level new positive cases, COVID-19-related hospitalisations, deaths, and long-term care facility deaths per day are publicly available and were collected from the Maricopa County Epidemic Curve Dashboard. Viral loads of SARS-CoV-2 (genome copies per day) measured in wastewater from each catchment were aggregated at the zip code level and city level and compared with the clinically reported data using root mean square error to investigate early warning capability of WBE. FINDINGS: Between April 1, 2020, and March 31, 2021, 1556 wastewater samples were analysed. Most locations showed two waves in viral levels peaking in June, 2020, and December, 2020-January, 2021. An additional wave of viral load was seen in catchments close to Arizona State University (Areas 6 and 7) at the beginning of the fall (autumn) semester in late August, 2020. Additionally, an early infection hotspot was detected in the Town of Guadalupe, Arizona, starting the week of May 4, 2020, that was successfully mitigated through targeted interventions. A shift in early warning potential of WBE was seen, from a leading (mean of 8·5 days [SD 2·1], June, 2020) to a lagging (-2·0 days [1·4], January, 2021) indicator compared with newly reported clinical cases. INTERPRETATION: Lessons learned from leveraging an existing neighbourhood-level WBE reporting dashboard include: (1) community buy-in is key, (2) public data sharing is effective, and (3) sub-ZIP-code (postal code) data can help to pinpoint populations at risk, track intervention success in real time, and reveal the effect of local clinical testing capacity on WBE's early warning capability. This successful demonstration of transitioning WBE efforts from opioids to COVID-19 encourages an expansion of WBE to tackle newly emerging and re-emerging threats (eg, mpox and polio). FUNDING: National Institutes of Health's RADx-rad initiative, National Science Foundation, Virginia G Piper Charitable Trust, J M Kaplan Fund, and The Flinn Foundation.


Asunto(s)
COVID-19 , Prioridades en Salud , Aguas Residuales , Humanos , Acceso a la Información , Analgésicos Opioides , COVID-19/epidemiología , Pandemias , Proyectos de Investigación , SARS-CoV-2 , Estados Unidos
12.
PLoS One ; 17(10): e0272830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36315517

RESUMEN

Genomic surveillance and wastewater tracking strategies were used to strengthen the public health response to an outbreak of the SARS-CoV-2 Delta AY.25 lineage associated with a university campus in Arizona. Epidemiologic and clinical data routinely gathered through contact tracing were matched to SARS-CoV-2 genomes belonging to an outbreak of AY.25 identified through ongoing phylogenomic analyses. Continued phylogenetic analyses were conducted to further describe the AY.25 outbreak. Wastewater collected twice weekly from sites across campus was tested for SARS-CoV-2 by RT-qPCR, and subsequently sequenced to identify variants. The AY.25 outbreak was defined by a single mutation (C18804T) and comprised 379 genomes from SARS-CoV-2 positive cases associated with the university and community. Several undergraduate student gatherings and congregate living settings on campus likely contributed to the rapid spread of COVID-19 across the university with secondary transmission into the community. The clade defining mutation was also found in wastewater samples collected from around student dormitories a week before the semester began, and 9 days before cases were identified. Genomic, epidemiologic, and wastewater surveillance provided evidence that an AY.25 clone was likely imported into the university setting just prior to the onset of the Fall 2021 semester, rapidly spread through a subset of the student population, and then subsequent spillover occurred in the surrounding community. The university and local public health department worked closely together to facilitate timely reporting of cases, identification of close contacts, and other necessary response and mitigation strategies. The emergence of new SARS-CoV-2 variants and potential threat of other infectious disease outbreaks on university campuses presents an opportunity for future comprehensive One Health genomic data driven, targeted interventions.


Asunto(s)
COVID-19 , Salud Única , Humanos , SARS-CoV-2/genética , Aguas Residuales , Universidades , COVID-19/epidemiología , Filogenia , Arizona/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , Brotes de Enfermedades , Genómica
13.
Emerg Infect Dis ; 28(7): 1520-1522, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654405

RESUMEN

We investigated a university-affiliated cohort of SARS-CoV-2 Omicron BA.2 infections in Arizona, USA. Of 44 cases, 43 were among students; 26 persons were symptomatic, 8 sought medical care, but none were hospitalized. Most (55%) persons had completed a primary vaccine series; 8 received booster vaccines. BA.2 infection was mild in this young cohort.


Asunto(s)
COVID-19 , Vacunas Virales , Arizona/epidemiología , COVID-19/epidemiología , Humanos , SARS-CoV-2 , Universidades
14.
Viruses ; 14(6)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35746787

RESUMEN

As the SARS-CoV-2 virus evolves, mutations may result in diminished sensitivity to qRT-PCR diagnostic assays. We investigated four polymorphisms circulating in the SARS-CoV-2 Delta lineage that result in N gene target failure (NGTF) on the TaqPath COVID-19 Combo Kit. These mutations were detected from the SARS-CoV-2 genome sequences that matched with the diagnostic assay results of saliva specimens. Full length N genes from the samples displaying NGTF were cloned into plasmids and assayed using three SARS-CoV-2 qRT-PCR assays. These constructs resulted in reduced sensitivity to the TaqPath COVID-19 Combo Kit compared to the controls (mean Ct differences of 3.06, 7.70, 12.46, and 14.12), but were detected equivalently on the TaqPath COVID-19 Fast PCR Combo 2.0 or CDC 2019_nCoV_N2 assays. This work highlights the importance of genomic sequencing to monitor circulating mutations and provide guidance in improving diagnostic assays.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Patología Molecular , SARS-CoV-2/genética , Sensibilidad y Especificidad
15.
Microbiol Spectr ; 10(2): e0208021, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35384692

RESUMEN

Shared bacteria between maternal breast milk and infant stool, infers that transfer of maternal breast milk microbiota through breastfeeding seeds the establishment of the infant gut microbiome. Whether combination antiretroviral therapy (cART) impacts the breast milk microbiota in women living with HIV is unknown. Since current standard of care for people living with HIV includes cART, it has been difficult to evaluate the impact of cART on the microbiome. Here, we performed a next-generation sequencing retrospective study from pre-ART era clinical trials in Nairobi, Kenya (between 2003-2006 before cART was standard of care) that tested the effects of ART regimens to prevent mother-to-child HIV transmission. Kenyan women living with HIV were randomized to receive either no ART during breastfeeding (n = 24) or cART (zidovudine, nevirapine, lamivudine; n = 25) postpartum. Using linear mixed-effects models, we found that alpha diversity and beta diversity of the breast milk bacterial microbiome changed significantly over time during the first 4 weeks postpartum (alpha diversity P < 0.0007; beta diversity P = 0.005). There was no statistically significant difference in diversity, richness, and composition of the bacterial microbiome between cART-exposed and cART-unexposed women. In contrast, antibiotic use influenced the change of beta diversity of the bacterial microbiome over time. Our results indicate that while early postpartum time predicts breast milk microbiome composition, cART does not substantially alter the breast milk microbiota in women living with HIV. Hence, cART has minimal impact on the breast milk microbiome compared to antibiotics use. IMPORTANCE Breastfeeding has important benefits for long-term infant health, particularly in establishing and shaping the infant gut microbiome. However, the impact of combination antiretroviral therapy exposure and antibiotics on the breast milk microbiome in women living with HIV is not known. Here, in a longitudinal retrospective study of Kenyan women living with HIV from the pre-antiretroviral therapy era, we found that antibiotic use significantly influenced breast milk microbiome beta diversity, but antiretrovirals exposure did not substantially alter the microbiome. Given the protective role of breastfeeding in maternal-infant health, these findings fill an important knowledge gap of the impact of combination antiretroviral therapy on the microbiome of women living with HIV.


Asunto(s)
Fármacos Anti-VIH , Microbioma Gastrointestinal , Infecciones por VIH , Complicaciones Infecciosas del Embarazo , Antibacterianos/uso terapéutico , Fármacos Anti-VIH/uso terapéutico , Antirretrovirales/uso terapéutico , Femenino , Infecciones por VIH/tratamiento farmacológico , Humanos , Lactante , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Kenia , Leche Humana , Periodo Posparto , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Estudios Retrospectivos
16.
Nat Microbiol ; 7(5): 653-662, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35449461

RESUMEN

Necrotizing enterocolitis (NEC) is a serious consequence of preterm birth and is often associated with gut bacterial microbiome alterations. However, little is known about the development of the gut virome in preterm infants, or its role in NEC. Here, using metagenomic sequencing, we characterized the DNA gut virome of 9 preterm infants who developed NEC and 14 gestational age-matched preterm infants who did not. Infants were sampled longitudinally before NEC onset over the first 11 weeks of life. We observed substantial interindividual variation in the gut virome between unrelated preterm infants, while intraindividual variation over time was significantly less. We identified viral and bacterial signatures in the gut that preceded NEC onset. Specifically, we observed a convergence towards reduced viral beta diversity over the 10 d before NEC onset, which was driven by specific viral signatures and accompanied by specific viral-bacterial interactions. Our results indicate that bacterial and viral perturbations precede the sudden onset of NEC. These findings suggest that early life virome signatures in preterm infants may be implicated in NEC.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Nacimiento Prematuro , Bacterias/genética , Enterocolitis Necrotizante/microbiología , Heces/microbiología , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Embarazo , Viroma/genética
17.
mSystems ; 7(2): e0006422, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35343798

RESUMEN

While the link between the cervicovaginal bacterial microbiome, human papillomavirus (HPV) infection, and cervical cancer is recognized (P. Laniewski, D. Barnes, A. Goulder, H. Cui, et al., Sci. Rep. 8:7593, 2018, http://dx.doi.org/10.1038/s41598-018-25879-7; A. Mitra, D. A. MacIntyre, Y. S. Lee, A. Smith, et al., Sci. Rep. 5:16865, 2015, http://dx.doi.org/10.1038/srep16865; A. Mitra, D. A. MacIntyre, J. R. Marchesi, Y. S. Lee, et al., Microbiome 4:58, 2016, http://dx.doi.org/10.1186/s40168-016-0203-0; J. Norenhag, J. Du, M. Olovsson, H. Verstraelen, et al., BJOG, 127:171-180, 2020, http://dx.doi.org/10.1111/1471-0528.15854; E. O. Dareng, B. Ma, A. O. Famooto, S. N. Adebamowo, et al., Epidemiol. Infect. 144:123-137, 2016, http://dx.doi.org/10.1017/S0950268815000965; A. Audirac-Chalifour, K. Torres-Poveda, M. Bahena-Roman, J. Tellez-Sosa et al., PLoS One 11:e0153274, 2016, http://dx.doi.org/10.1371/journal.pone.0153274; M. Di Paola, C. Sani, A. M. Clemente, A. Iossa, et al., Sci. Rep. 7:10200, 2017, http://dx.doi.org/10.1038/s41598-017-09842-6), the role of the cervicovaginal virome remains poorly understood. In this pilot study, we conducted metagenomic next-generation sequencing of cervicovaginal lavage specimens to investigate the relationship between the cervicovaginal DNA virome, bacterial microbiome, genital inflammation, and HPV infection. Specific virome alterations were associated with features of the local microenvironment related to HPV persistence and progression to cervical cancer. Cervicovaginal viromes clustered distinctly by genital inflammation state. Genital inflammation was associated with decreased virome richness and alpha diversity and an increased abundance of Anelloviridae species from the genus Alphatorquevirus. Lactobacillus bacteriophages were closely associated with increased Lactobacillus abundance, consistent with phage-host relationships. Interestingly, bacteria-bacteriophage transkingdom interactions were linked to genital inflammation and showed specific interactions with bacterial vaginosis-associated bacteria, including Gardnerella, Prevotella, and Sneathia. Taken together, our results reveal prominent virome interactions with features of the cervicovaginal microenvironment that are associated with HPV and cervical cancer. These findings expand our understanding of the cervicovaginal host-microbiome interactions in women's health. IMPORTANCE HPV infection is an established risk factor for cervical cancer. However, more broadly, the role of the cervicovaginal virome in cervical cancer progression is not well understood. Here, we identified cervicovaginal DNA virome alterations associated with local microenvironment factors (vaginal microbiota and genital inflammation) that influence HPV persistence and progression to cervical cancer. These findings indicate that the cervicovaginal virome plays an important role in women's health.


Asunto(s)
Bacteriófagos , Microbiota , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Viroma , Infecciones por Papillomavirus/microbiología , Proyectos Piloto , Cuello del Útero/microbiología , Inflamación , ADN , Microambiente Tumoral
18.
Water Res ; 205: 117710, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34607084

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely emerged from a zoonotic spill-over event and has led to a global pandemic. The public health response has been predominantly informed by surveillance of symptomatic individuals and contact tracing, with quarantine, and other preventive measures have then been applied to mitigate further spread. Non-traditional methods of surveillance such as genomic epidemiology and wastewater-based epidemiology (WBE) have also been leveraged during this pandemic. Genomic epidemiology uses high-throughput sequencing of SARS-CoV-2 genomes to inform local and international transmission events, as well as the diversity of circulating variants. WBE uses wastewater to analyse community spread, as it is known that SARS-CoV-2 is shed through bodily excretions. Since both symptomatic and asymptomatic individuals contribute to wastewater inputs, we hypothesized that the resultant pooled sample of population-wide excreta can provide a more comprehensive picture of SARS-CoV-2 genomic diversity circulating in a community than clinical testing and sequencing alone. In this study, we analysed 91 wastewater samples from 11 states in the USA, where the majority of samples represent Maricopa County, Arizona (USA). With the objective of assessing the viral diversity at a population scale, we undertook a single-nucleotide variant (SNV) analysis on data from 52 samples with >90% SARS-CoV-2 genome coverage of sequence reads, and compared these SNVs with those detected in genomes sequenced from clinical patients. We identified 7973 SNVs, of which 548 were "novel" SNVs that had not yet been identified in the global clinical-derived data as of 17th June 2020 (the day after our last wastewater sampling date). However, between 17th of June 2020 and 20th November 2020, almost half of the novel SNVs have since been detected in clinical-derived data. Using the combination of SNVs present in each sample, we identified the more probable lineages present in that sample and compared them to lineages observed in North America prior to our sampling dates. The wastewater-derived SARS-CoV-2 sequence data indicates there were more lineages circulating across the sampled communities than represented in the clinical-derived data. Principal coordinate analyses identified patterns in population structure based on genetic variation within the sequenced samples, with clear trends associated with increased diversity likely due to a higher number of infected individuals relative to the sampling dates. We demonstrate that genetic correlation analysis combined with SNVs analysis using wastewater sampling can provide a comprehensive snapshot of the SARS-CoV-2 genetic population structure circulating within a community, which might not be observed if relying solely on clinical cases.


Asunto(s)
COVID-19 , SARS-CoV-2 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pandemias , Aguas Residuales
19.
Emerg Infect Dis ; 27(10): 2718-2720, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34545803

RESUMEN

Genomic surveillance can provide early insights into new circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. While conducting genomic surveillance (1,663 cases) from December 2020-April 2021 in Arizona, USA, we detected an emergent E484K-harboring variant, B.1.243.1. This finding demonstrates the importance of real-time SARS-CoV-2 surveillance to better inform public health responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Arizona/epidemiología , Genómica , Humanos , Salud Pública
20.
Brain Sci ; 11(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34356139

RESUMEN

Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut-Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut-Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1ß and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut-Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...